6,859 research outputs found

    Natural frequency of beams with embedded piezoelectric sensors and actuators

    No full text
    A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoelectric sensors/actuators. The Euler-Bernoulli beam theory and Rayleigh-Ritz approximation technique are used in the present analysis. Parametric studies show that the size, volume fraction and location of the piezoelectric inclusions significantly influence the natural frequency of the beam

    Low-Cost Piezoelectric Sensors for Time Domain Load Monitoring of Metallic Structures During Operational and Maintenance Processes

    Get PDF
    The versatility of piezoelectric sensors in measurement techniques and their performance in applications has given rise to an increased interest in their use for structural and manufacturing component monitoring. They enable wireless and sensor network solutions to be developed in order to directly integrate the sensors into machines, fixtures and tools. Piezoelectric sensors increasingly compete with strain-gauges due to their wide operational temperature range, load and strain sensing accuracy, low power consumption and low cost. This research sets out the use of piezoelectric sensors for real-time monitoring of mechanical strength in metallic structures in the ongoing operational control of machinery components. The behaviour of aluminium and steel structures under flexural strength was studied using piezoelectric sensors. Variations in structural behaviour and geometry were measured, and the load and μstrains during operational conditions were quantified in the time domain at a specific frequency. The lead zirconium titanate (PZT) sensors were able to distinguish between material types and thicknesses. Moreover, this work covers frequency selection and optimisation from 20 Hz to 300 kHz. Significant differences in terms of optimal operating frequencies and sensitivity were found in both structures. The influence of the PZT voltage applied was assessed to reduce power consumption without signal loss, and calibration to μstrains and loads was performed.This research was funded by Basque Government, grant number KK-2019/00051-SMARTRESNAK and by the European Commission, grant number 869884- RECLAIM

    Zeolite crystal layers coupled to piezoelectric sensors

    Get PDF
    Microporous zeolite crystals were successfully coupled onto the gold electrodes of quartz crystal microbalances (QCM). A self-assembled monolayer of thiol-alkoxysilane coupling agent on the gold surface was used as the interfacial layer to promote adhesion of the zeolite crystals to the QCM. The resulting, densely packed single layers of zeolite crystals were stable to at least 625 K. Transient sorption behavior of organic vapor pulses, dynamic vapor sorption isotherms and nitrogen sorption isotherms at liquid nitrogen temperature were examined to characterize the zeolite-coated QCMs. Depending on the type of zeolite coating, the resonance frequency response to vapor pulses could be increased up to 500-fold compared to the bare QCM. The regular micropores (0.3-0.8 nm) of the QCM-attached zeolite crystals were found to control molecular access into the extensive intrazeolite volume. Selectivity of the frequency response in excess of 100:1 toward molecules of different size and/or shape could be demonstrated. An additional recognition mechanism based upon intrazeolite diffusion rates was also established

    Sound propagation and force chains in granular materials

    Full text link
    Granular materials are inherently heterogeneous, leading to challenges in formulating accurate models of sound propagation. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of both the amplitude and speed of an acoustic wave in the near-field regime. We observe that the wave amplitude is on average largest within particles experiencing the largest forces, particularly in those chains radiating away from the source, with the force-dependence of this amplitude in qualitative agreement with a simple Hertzian-like model of particle contact area. In addition, we are able to directly observe rare transient force chains formed by the opening and closing of contacts during propagation. The speed of the leading edge of the pulse is in quantitative agreement with predictions for one-dimensional chains, while the slower speed of the peak response suggests that it contains waves which have travelled over multiple paths even within just this near-field region. These effects highlight the importance of particle-scale behaviors in determining the acoustical properties of granular materials

    Simulation of Surface Oscillation of Ultrasound Sensor Based on Piezoelectric Semiconductor Transducer

    Get PDF
    In the article theoretical and experimental studies of the surface deformation of piezoelectric sensors are carried out. Round membrane was used as a model of piezoelectric sensors. Experimental studies were conducted on mass-produced sensors and self-made sensor. Good match fluctuations in membrane model with fixed edges real sensors is shown

    Robust control of a bimorph mirror for adaptive optics system

    Full text link
    We apply robust control technics to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested taking into account the frequential behavior of the turbulent phase. An H_\infty controller is designed in an infinite dimensional setting. Due to the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input single output methods

    A Superheated Droplet Detector for Dark Matter Search

    Get PDF
    We discuss the operation principle of a detector based on superheated droplets of Freon-12 and its feasibility for the search of weakly interacting cold dark matter particles. In particular we are interested in a neutralino search experiment in the mass range from 10 to 10^4 GeV/c^2 and with a sensitivity of better than 10^-2 events/kg/d. We show that our new proposed detector can be operated at ambient pressure and room temperature in a mode where it is exclusively sensitive to nuclear recoils like those following neutralino interactions, which allows a powerful background discrimination. An additional advantage of this technique is due to the fact that the detection material, Freon-12, is cheap and readily available in large quantities. Moreover we were able to show that piezoelectric transducers allow efficient event localization in large volumes.Comment: 15 pages LATEX; 11 figures on request from [email protected] submitted to Nuclear Instruments and Methods
    corecore